Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes

نویسندگان

  • Ronald C. King
  • Trevor A. Welsh
  • Stephanie J. van Willigenburg
چکیده

Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity results on ribbon Schur function differences

There is considerable current interest in determining when the difference of two skew Schur functions is Schur positive. While the general solution for ribbon Schur functions seems out of reach at present, we determine necessary and sufficient conditions for multiplicity-free ribbons, i.e. those whose expansion as a linear combination of Schur functions has all coefficients either zero or one. ...

متن کامل

. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...

متن کامل

2 00 5 Schur Positivity and Schur Log - Concavity

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...

متن کامل

Positivity And

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...

متن کامل

The skew Schubert polynomials

We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen-Li-Louck ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007